Axiom of choice and chromatic number of the plane

نویسندگان

  • Saharon Shelah
  • Alexander Soifer
چکیده

1950 the 18-year old Edward Nelson posed the problem of finding χ (see its history in [S]). A number of relevant results were obtained under additional restrictions on monochromatic sets. K. Falconer, for example, showed [F] that χ is at least 5 if monochromatic sets are Lebesgue measurable. Amazingly though, the problem has withstood all assaults in general case, leaving us with embarrassingly wide range for χ being 4, 5, 6 or 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axiom of choice and chromatic number: examples on the plane

In our previous paper (J. Combin. Theory Ser. A 103 (2) (2003) 387) we formulated a conditional chromatic number theorem, which described a setting in which the chromatic number of the plane takes on two different values depending upon the axioms for set theory. We also constructed an example of a distance graph on the real line R whose chromatic number depends upon the system of axioms we choo...

متن کامل

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

Axiom of choice and chromatic number of Rn

In previous papers (J. Combin Theory Ser. A 103 (2003) 387) and (J. Combin. Theory Ser. A 105 (2004) 359) Saharon Shelah and I formulated a conditional chromatic number theorem, which described a setting in which the chromatic number of the plane takes on two different values depending upon the axioms for set theory.We also constructed examples of a distance graph on the real line R and differe...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2003